内外海鉱山跡の調査報告

吉澤 康暢*

Survey report of Uchitomi Mine site in Fukui Prefecture, Central Japan

Yasunobu YOSHIZAWA*

(要旨) 内外海鉱山跡は,若狭湾に突き出した内外海半島西端松ヶ崎の北東部に位置し,昭和29年頃 までタングステン鉱の採掘が続けられていた場所である.このタングステン鉱床は松ヶ崎鉱床と呼ば れ,古生代ペルム紀の堆積岩層(超丹波帯)に貫入した蘇洞門花崗岩類(角閃石黒雲母花崗岩)との 接触部付近に形成されている.付近一帯の海岸線は,高さ数十メートルの海食崖が約6kmにわたって 続く景勝地で,蘇洞門海岸と呼ばれている.

今回,内外海鉱山跡の3ヶ所の入り口から入坑し,延長約160mの坑道の延びや坑道内壁で,輝水鉛 鉱や黄銅鉱の鉱化帯を目視で確認できた.また,ミネラライトにより角閃石黒雲母花崗岩中に含まれ る灰重石と考えられる鉱物の青色の蛍光を確認できた.さらに坑道内壁で採集した角閃石黒雲母花崗 岩試料の蛍光X線化学組成分析によりタングステン酸を検出した.

キーワード:内外海鉱山跡,松ヶ崎鉱床,角閃石黒雲母花崗岩,灰重石,タングステン

1. はじめに

内外海鉱山跡は、小浜市泊地区内にあり、西方の大 島半島鋸崎と相対峙して,小浜湾に突き出した松ヶ崎 の北東部に位置する (図1). この付近一帯の海岸線は 古生代ペルム紀の堆積岩層(超丹波帯)および、こ れに中生代白亜紀末(70.7±1.8Ma, 亀高ほか, 2010) に貫入した蘇洞門花崗岩類(角閃石黒雲母花崗岩)か ら形成されている (図2), (福井県, 2010). この貫入 の接触部付近にタングステン鉱床が発見され、内外海 鉱山としてタングステン鉱や銅鉱の採掘が昭和29年頃 まで行われていた.この鉱床は松ヶ崎鉱床と呼ばれ, 1号坑・2号坑・3号坑・4号坑・5号坑・6号坑および小 山下坑・小山上坑の8坑道が開削され、それらのうち1 号坑・2号坑は本鉱山の主要な部分であった. タング ステン鉱や銅鉱は、主にペルム紀堆積岩層に貫入した 蘇洞門花崗岩類との接触部沿った花崗岩内で採掘が行 われていた(原口・辻岡, 1954; 平林・宮川, 1954). 当時、採掘した鉱石は船で小浜市内(竹原町)の選鉱 場に運ばれたが、冬期の数カ月は波浪が荒く、鉱山の 船着き場への接岸が困難であった. 鉱山への陸路は, 小浜市より堅海・泊地区を経て、海岸線を山麓沿いに 進み、松ヶ崎に達するルートがあった、しかし、泊地 区から先の鉱山までの約3kmは、急峻な絶壁が続く海 岸線で、鉱山への到達は困難を極めた、

本鉱山は、かつて銅鉱山として採掘が続けられ、戦

時中はモリブデン鉱山として開発された. その後, 鉱 業権者として神戸市の帝国鉱業株式会社が継承した が,その鉱山技師がミネラライトを坑内に持ち込んだ ことにより, 灰重石を多量に含有することが発見され, タングステン鉱山として採掘が続けられてきた. 当時 の資料(原口・辻岡,1954;平林・宮川,1954)によると, 松ヶ崎鉱床の主要部は,松ヶ崎頸部の延長60mの間に あり,1号坑(図3,4)の南半分30mの間は,タングス テン鉱の品位が特に良好であった.本鉱山の富鉱部の CaWO4(灰重石)は20~40%にもおよぶが,平均粗鉱 品位は約3%で,副産物としてのMoS2(輝水鉛鉱)は 0.5%であった.また,推定埋蔵量は海面以上のCaWO4 が415t,MoS2が52t.海面以下ではCaWO4は212t,

図2:内外海鉱山付近の地質図(塚脇ほか, 1961)

図3:内外海鉱山坑道図(数字は坑内放射能強度)(塚脇ほか,1961)

図4:第1坑西口,第2坑西口付近の坑道拡大図(鵜飼,1959)

MoS2は35 t であった.

タングステンの主要鉱石は鉄マンガン重石と灰重石 であるが、内外海鉱山では灰重石のみを産出した.日 本におけるタングステン鉱山は、かつて130ヶ所以上 あり、そのうち40ヶ所から少量の精鉱が生産された.

今回,内外海鉱山跡の調査を2008年から2017年ま でに5回行うことができた.その結果,内外海鉱山周 辺の地形・地質の特徴をはじめ,入坑可能な3ヶ所の 坑道入り口や延長約160mの坑道の延びを確認できた. また,坑内の壁面数か所で,輝水鉛鉱や黄銅鉱の鉱化 帯を目視で確認できた.また,ミネラライトにより角 閃石黒雲母花崗岩中に含まれる灰重石と考えられる鉱 物の青色の蛍光を確認できた.さらに坑道内壁で採集 した角閃石黒雲母花崗岩試料の蛍光X線化学組成分析 により,タングステン酸を検出した.以上の調査結果 の概要を報告する.

2. 調査方法

内外海鉱山跡への調査は、小浜市泊地区より釣り用 の渡し船の送迎により実施した.これまでに5回の調 査機会(2008年5月23日,2010年6月9日,2013年9月13日, 2017年4月24日,2017年8月29日)があった.調査坑道 は松ヶ崎鉱床の3ヶ所で、1号坑西口、2号坑西口、2号 坑東口から入坑する坑道がこれにあたる.調査内容は、 付近一帯の地形・地質調査をはじめ、古生代ペルム紀 の堆積岩層と蘇洞門花崗岩類とのコンタクトゾーンの 観察や写真撮影、坑道の現状および坑道地図(塚脇ほ か、1961)との照合、坑道内壁での灰重石や輝水鉛鉱 などの鉱化帯の目視による観察と写真撮影、標本採集 などである.

また,坑道内壁の岩石中からタングステン成分を検 出する目的で,角閃石黒雲母花崗岩の分析試料を11個 採集した.この分析試料と中国産の灰重石の結晶標本 について,蛍光X線化学組成分析を行った.岩石試料 をダイヤモンドカッターで大割切断した後,X線分析 測定用金属容器に入る大きさに細断した.金属容器 に入る試料の大きさは直径32mm~48mm,厚さ5~10mm で,試料表面を水洗した後乾燥を行った.X線分析に は一試料あたり20~25分を要した.蛍光X線分析は, 福井県工業技術センターの蛍光X線分析装置(Rigaku ZSX 100e)により定性分析と定量分析を行った.

3. 調査結果

内外海鉱山全盛期に,鉱山から採掘した鉱石を運び 出すために建設した,コンクリート製の船着き場が, 日本海の荒波に耐えて残されていたため上陸は容易に できた.鉱山全体の外観として,坑口が3ヶ所と大き な海食洞の入り口がポッカリとあいている(写真1,2, 3).鉱山の入り口付近は常に波浪の侵食を受けている ため,黒っぽい超丹波帯の堆積岩層と白っぽい蘇洞門 花崗岩類との接触部のコントラストが明瞭で,地層の 傾斜や構造なども良く分かる状態である(写真4,5).

内外海鉱山跡の調査結果について,(1)坑道・鉱床の 鉱化帯調査結果,(2)地形・地質調査結果,(3)角閃石黒 雲母花崗岩の顕微鏡観察結果,(4)蛍光X線化学組成分 析結果に分けて報告する.

(1) 坑道・鉱床の鉱化帯調査結果

今回の主要な調査坑道は松ヶ崎鉱床で,1号坑西口, 2号坑西口,2号坑東口の3ヶ所である(写真5,6,7,8). 松ヶ崎鉱床は,超丹波帯に蘇洞門花崗岩類が貫入した際,貫入面に沿って接触変成による鉱床が形成された ものである.花崗岩は優白色の中〜粗粒で,径数cm〜 数10cmの苦鉄質の捕獲岩が多数含まれている.これは 坑道内部の各所をはじめ,海岸沿いの露頭のすべての 場所で確認できる(写真25,26).

坑道内部は、横坑,竪坑,斜坑などが主に手掘りで 迷路のように掘り進められている.落盤している箇所 も多く,水没した竪坑もあり(写真9),すべての坑道 の調査はできなかった.坑道内の壁面,天井や床面の ほとんどは,片面が黒っぽい超丹波帯の頁岩層,反対 の面が白っぽい蘇洞門花崗岩類からなっており,頁岩 層と角閃石黒雲母花崗岩との接触部に沿って鉱化帯が できており,輝水鉛鉱や黄銅鉱が目視で確認できる. 松ヶ崎鉱床は,この二つの岩層の境界に沿って採掘し ていたことを示している(写真7,8,11,12).

鉱床の鉱化帯の幅の最大は2.6mで,走向延長約10 ~20mの範囲に富鉱体をその接触部に形成している. 本鉱床の特異性は,一般金属鉱床のように石英脈を伴 わないことである.輝水鉛鉱や黄銅鉱の鉱石は,超丹 波帯の頁岩層との接触帯にあたる角閃石黒雲母花崗岩 中にのみ鉱染的に濃集し,超丹波帯の頁岩層中にはほ とんど鉱染していない.品位は花崗岩中の接触部にの み良好である.

(2) 地形·地質調査結果

蘇洞門花崗岩類(角閃石黒雲母花崗岩)は、内外海 半島の若狭湾に面した北西斜面に連続して露出し大海 食崖を形成している.海上よりその連続性や超丹波帯 (南部)・丹波帯(北部)とのコンタクトゾーンを観察 すると、久須夜ヶ岳(618.5m)の急峻な北西斜面の 標高200~250mぐらいの位置で、北東-南西方向の海 岸線とほぼ平行に接触している様子が明瞭に見える. 松ヶ崎や内外海鉱山跡付近は、この蘇洞門花崗岩類の 南西端にあたる.北東端は、老人礁近くの"白石黒石" (写真31,32) と呼ばれる場所で、赤褐色の丹波帯(古 生代~中生代に堆積した砂岩・頁岩互層)と、それを 貫く白い蘇洞門花崗岩類(角閃石黒雲母花崗岩)が接 触している、海食崖の巨大な岩盤が縦に二色に分かれ て見える現象は、地質学的に貴重な場所である.この 海食崖に見えている蘇洞門花崗岩類は、若狭湾全体の 沈降で貫入部分の上側部分が見えている状態である. 本来の岩体の中心部分は海面下にある部分と、海食で 失われた部分にあたると考えられる.

蘇洞門花崗岩類の南西端にあたる内外海鉱山跡2号 坑西口は,超丹波帯の砂岩・頁岩互層と角閃石黒雲母 花崗岩との接触部にあたり,坑道は二つの岩層の境界 部に沿って掘られている.この鉱山跡の位置は小浜湾 と若狭湾との境界部に一致し,冬期の季節風による波 浪の激しい侵食を受け,岩層や坑口が削り込まれてい る.その分,花崗岩類の貫入によるコンタクト部分の 詳細な構造や組織が明瞭に浮き出ており,観察や調査 が容易であった.(写真5,21,22,24).超丹波帯は, 古生代ペルム紀の砂岩・頁岩を主体とし,少量のチャ ート・砂質頁岩などからなる遠洋性堆積物である.地 層の平均的な走向はN50°Eで,傾斜は北西に40~60° の単斜構造である(写真4,28).また,蘇洞門花崗岩 類の貫入に伴う熱変質を受け,ホルンフェルス化して いる.波浪の侵食を受けたホルンフェルス化した露頭 では、シルト岩・泥岩の細互層のラミナが鮮やかに浮 き出ている(写真23).

角閃石黒雲母花崗岩の薄片の偏光顕微鏡観察では, 石英・カリ長石・斜長石・黒雲母・角閃石などが確認でき, 平均的な花崗岩といえる.長石・黒雲母は,しばしば 局部的に変質して,緑泥石化作用,カオリン化作用を 受けている.灰重石については,肉眼ではカリ長石と の区別が困難で,坑内にミネラライトを持参し坑内壁 で蛍光部を調査した.青色の蛍光を発する灰重石と考 えられる鉱物(写真29,30)をはじめ,銀白色に輝く 輝水鉛鉱(写真14)や黄銅鉱などの鉱物を確認した.

灰重石は、花崗岩中の有色鉱物、長石を交代し不規 則に散布している場合と、花崗岩の節理面に沿って灰 重石の微晶を伴う鉱条がある場合とがある。その何れ の場合も黄銅鉱・輝水鉛鉱・黄鉄鉱の鉱化作用を伴う と考えられている(原口・辻岡、1954).

蘇洞門花崗岩類の特色は,苦鉄質の捕獲岩を数多く 含んでいることである(写真25,26).捕獲岩が特に 目につく露頭としては,鉱山北側の海食崖をはじめ(写 真25),鉱山1号坑西口の東側にある巨大な海食洞の壁 面で観察できるものである(写真26).捕獲岩の岩質 は何れも黒っぽい苦鉄質の岩石で,白っぽい黒雲母花 崗岩とは対照的でよく目立つ.捕獲岩を多く含むこと は,内外海半島の角閃石黒雲母花崗岩体全域で見られ るもので,鉱山より東側の観光地"蘇洞門"でも数多 くの捕獲岩を観察できる.この他,1号坑西口周辺の 転石に見られるもので,超丹波帯の各種岩片の捕獲岩 を含むものもある(写真27).

花崗岩中には北東-南西方向の節理および断層が発 達している.蘇洞門をはじめ急峻な地形などは、これ らの地質構造線の方向などに支配されている.

(3) 角閃石黒雲母花崗岩の顕微鏡観察結果

松ヶ崎や蘇洞門付近の角閃石黒雲母花崗岩を双眼実 体顕微鏡や偏光顕微鏡で観察すると,主要構成鉱物は 角閃石・黒雲母・石英・斜長石・カリ長石などからな り,角閃石・黒雲母の縁辺部は緑泥石化が進んでいる. タングステンを含む鉱物である灰重石は,白色である ため長石類との区別が困難であった.また,輝水鉛鉱・ 黄銅鉱・黄鉄鉱などの金属鉱物の微晶も識別でき,花 崗岩全体がこれらの鉱物の鉱染を受けていると考えら れる.この他,花崗岩全体として黒雲母などの有色鉱 物の割合がやや多く,花崗岩というより花崗閃緑岩に 近い岩石であると考えられる.蛍光X線分析において も坑道内の花崗岩片のSiO2量が約67%なので,花崗岩 と閃緑岩の中間タイプと考えられる.また,結晶粒の 大きい長石類が目立つ花崗斑岩的な部分も見られる. この斑状の組織は超丹波帯との接触部付近の周縁相で 顕著にみられる.

(4) 蛍光X線化学組成分析結果

内外海鉱山跡の坑道内で蛍光X線化学組成分析用の 岩石標本を無作為に11か所で採集した.坑道は鉱化帯 に沿って掘られているので,灰重石や輝水鉛鉱を含む と考えられる角閃石黒雲母花崗岩の岩片を坑道壁面で 採集した.灰重石については,坑内にミネラライトを 持ち込み,照射しながら採集場所を決めたが,灰重石 の蛍光色である青色を示す場所はわずかで,ほとんど は掘りつくされているようであった.輝水鉛鉱につい ては普通のランプの光を当てると壁面全体が銀色に輝 く場所(写真14)が各所で見つかった.

灰重石は、タングステンを含む炭酸塩鉱物で、鉱物 組成はCaWO4タングステン酸カルシウムで、輝水鉛 鉱はモリブデンを含む硫化鉱物で、鉱物組成はMoS2 硫化モリブデンである。

採集した角閃石黒雲母花崗岩片11個および中国産の 灰重石の単結晶標本1個について蛍光X線化学組成分 析を行った結果, 灰重石の化学組成であるタングステ ンが検出できたのは1試料のみであった. 試料は坑道 内で無作為に採集したものなので,松ヶ崎鉱床のタン グステンは,古生層との接触部付近の花崗岩体全体に 広範囲に生成されているものと考えられる.次にタン グステンを含む花崗岩試料と灰重石の単結晶(中国産) のSQX分析結果(単位wt.%)を示す.分析結果は表1, 表2に示す.

- タングステンを含む花崗岩標本の分析結果 <u>SiO2-67.8%</u>, CaO-3.6%, Fe₂O₃-2.7%, Al₂O₃-15.9%, Na₂O-4.0%, MgO-1.0%, <u>WO₃-0.5%</u>, K₂O - 3.6%
- タングステンを含まない花崗岩標本の分析結果 (平均値)

 $\frac{SiO_2 - 67.2\%}{0.8\%}, CaO - 3.7\%, Fe_2O_3 - 3.5\%, Al_2O_3 - 0.8\%, CuO - 0.05\%, ZnO - 0.03\%$

③ 灰重石の単結晶の分析結果
SiO₂-0.7%, <u>CaO-20.0%</u>, Fe₂O₃-0.6%, SO₃-0.8%, SeO₂-0.8%, <u>WO₃-76.1%</u>

以上の結果から、タングステンを含む花崗岩標本で

内外海鉱山跡の調査報告

表1:松ヶ崎鉱床内の角閃石黒雲母花崗岩の蛍光X線化学組成分析結果

SQX分析結果										
試料名 : 松ヶ崎−5 アプリケーション :EZS003XNV			Ē	【料モデル	:バルク			分析日時 :: バランス成分 マッチングライ ファイル :	2017-12-5 ・ (ブラリ f171205-05	10:42
No.	成分名	分核	斤値	単位	材	全出限界	分析線	X線	強度	規格化前
1	Na2O	4.0	8000	mass%		0.0284	Na-KA	3.	2383	3.8850
	2 MgO	1.0	044	mass%		0.0277	Mg-KA	1.	6364	0.9754
	3 AI2O3	15.9	9299	mass%		0.0145	AI-KA	190.	0859	15.4689
	4 SiO2	67.7	/862	mass%		0.0314	Si-KA	562.	8724	65.8245
	5 P205	0.0	1988	mass%		0.0035	P-KA	1.	4278	0.0959
	7 CI	0.0	812	mass%		0.0037	S-KA	0.	0001	0.0390
	, сі в к20	3.6	346	mass%		0.0070	K -KA	99	5892	3 5294
	9 CaO	3.6	3317	mass%		0.0050	Ca-KA	78.	5080	3.5266
10	D TiO2	0.2	2661	mass%		0.0128	Ti-KA	1.	3906	0.2584
11	1 MnO	0.0)439	mass%		0.0051	Mn-KA	1.	0786	0.0426
12	2 Fe2O3	2.6	612	mass%		0.0277	Fe-KB1	18.	1333	2.5841
13	3 Rb2O	0.0	0181	mass%		0.0013	Rb-KA	6.	8629	0.0176
14	4 SrO	0.0)506	mass%		0.0014	Sr-KA	20.	2571	0.0491
15	5 ZrO2	0.0	0127	mass%		0.0008	Zr-KA	10.	4754	0.0123
16	6 BaO	0.1	019	mass%		0.0208	Ba-KA	4.	4776	0.0990
17	7 WO3	0.5	5167	mass%		0.0071	W -LA	18.	2032	0.5017
蛍光	X線分析				定性分析	チャート				Rigaku
試料	松ヶ崎−5	, . . .								
1.0	0	×200.0	x2.0	x1.0	x2.0 ≤	×700.0	×300	.0 x3.0	x4.0	×0.02
1.0 (kobs) (kob	8- 6- 2-	K -KA	CI-KA	S -KA	P-KA3	Site	- AI-SKA3	WE-KY	X-ex	Malim
×10	112 114 Ca-KA	135 138 9 K -KA	1 94 1 CI-KA	08 111 S -KA	139 142 P-KA	108 110 Si-KA	0 142 1 AI-K	45 44 46 A Mg-KA	54 56 Na-KA	89 92 F-KA (deg)
x10 4.((sdoy)) 赵尔馨X 1.(0- 0- 0- 8 8 9 9	- -	Rb-KA W-LGI	<u>≈ w ¥6\$82</u> w -LB1	M -LA	× w -LL Fe-KB1	Fairka throw 181	- Mn-KA	− Tr-KB1 - W -LB1-2nd	→ TrKA
0.0	5 10	15 20	25 30	35 4	0 45 He	50 bavy	55 60	65 70	75 80	85 90 2θ角度(deg)

表2:中国産灰重石結晶の蛍光X線化学組成分析結果

SQX分析結果												
試料名 : アプリケー	灰重石橋 ・ション :EZS	₹本 004XNV	試料モデル :バ	ルク	分析日時 :2017-12-5 11:53 パランス成分 : マッチングライブラリ ファイル: f171205-12							
No.	成分名	分析値	単位	検出限界	分析線	X線強度	規格化前					
1	AI2O3	0.2746	mass%	0.0273	AI-KA	0.1194	0.1320					
2	SiO2	0.7257	mass%	0.1055	Si-KA	0.2366	0.3490					
3	SO3	0.8082	mass%	0.0251	S -KA	0.2338	0.3887					
4	K2O	0.0977	mass%	0.0089	K –KA	0.0616	0.0470					
5	CaO	19.9751	mass%	0.0596	Ca-KA	10.2111	9.6061					
6	Fe2O3	0.6068	mass%	0.0476	Fe-KA	0.4133	0.2918					
7	Ga2O3	0.1399	mass%	0.0598	Ga-KA	0.2398	0.0673					
8	SeO2	0.7863	mass%	0.3230	Se-KB1	0.1557	0.3781					
9	ZrO2	0.1006	mass%	0.0337	Zr-KA	0.2283	0.0484					
10	PdO	0.2721	mass%	0.0876	Pd-KA	0.2837	0.1308					
11	WO3	76.0966	mass%		W -LA	39.8813	36.5950					
12	PuO2	0.1165	mass%	0.0532	Pu-LA	0.1597	0.0560					

は、WO₃が少ない値であるが,特別な場所での採集 ではなく坑道内で無作為に採集したものなので,花崗 岩体全体に広範囲に鉱染されているものと考えられ る.また,SiO2量が約67%なので,花崗岩と閃緑岩の 中間タイプの花崗閃緑岩と考えられる.SiO2量はタン グステンを含まない花崗岩標本の分析結果(平均値) と差がない. また, CuO, ZnOを含んでいないのが特 徴といえる. 灰重石の単結晶の分析結果については, WO3が76.1%と,タングステンをかなり多く含む良質 の標本といえる. CaO-20.0%については, Caは灰重石 (CaWO4)の主な化学成分と考えられるので,適した 値であるといえる.

4. 考察とまとめ

内外海鉱山跡は小浜湾の入口という目立つ場所にあ り、蘇洞門海岸の大海食崖の末端部に位置する.ここ に松ヶ崎鉱床が発見され、タングステンというレアメ タルが採掘されたのも容易に説明がつくように思う. この鉱床は、超丹波帯の堆積岩層に貫入した蘇洞門花 崗岩類(角閃石黒雲母花崗岩)との接触部に形成され たもので、二つの岩層の色の違いや超丹波帯のホルン フェルス化した砂岩・頁岩互層の急傾斜の構造などが 人々の興味・関心を引いたものと考えられる.

内外海鉱山跡付近の地形・地質の特徴について考え ると、松ヶ崎とその北側の突出部は超丹波帯の堆積岩 層からなっており,内外海鉱山跡は海食などが原因で, 地形的に凹みになっている. ここがちょうど蘇洞門花 崗岩類が分布している部分になっている. 内外海半島 の蘇洞門花崗岩類は、北東-南西方向に貫入の境界線 があるが、その南西方向の延長部が鉱山跡にピッタリ 一致する. 花崗岩の分布は、両サイドを超丹波帯の堆 積岩層に挟まれ、南西に向かって先細りしている、つ まり、花崗岩の両サイドに堆積岩層との接触部があり、 鉱床の成立条件は高くなっていると考えられる。下層 部分にも接触部があると考えられるので、鉱床はさら に増えることになる. また, 鉱山跡付近は, 花崗岩体 の末端部的な環境になっているので、各種元素が濃集 する可能性が大きい.従って、内外海鉱山跡はタング ステンやモリブデンなどレアメタルの重鉱物が生成さ れる特別な場所であった可能性が高い.

1号坑,2号坑付近は,波浪の侵食で,岩石表面をは じめ,岩層の接触部や花崗岩の貫入部の詳細な状態が 観察できるベリーポイントであり,内外海鉱山の成り 立ちを理解するための重要なポイントでもある.

内外海鉱山の坑道内の壁面, 天井や床面のほとんど は, 片面が黒っぽい超丹波帯の頁岩層, 反対の面が白 っぽい蘇洞門花崗岩類からなっており, 頁岩層と角閃 石黒雲母花崗岩との接触部に沿って鉱化帯ができてお り,坑道壁面で輝水鉛鉱や黄銅鉱が目視で確認できる. 松ヶ崎鉱床は, この二つの岩層の境界に沿って採掘し ていたものと考えられる.

本鉱床の特異性は,一般金属鉱床のように石英脈を 伴わないことである.鉱床の鉱化帯の幅の最大は2.6m で、走向延長約10~20mの範囲に富鉱体をその接触部 に形成している.輝水鉛鉱や黄銅鉱の鉱石は、超丹波 帯の頁岩層との接触帯にあたる花崗岩中にのみ鉱染的 に濃集し、頁岩層中には鉱染していない.

花崗岩の顕微鏡観察では、タングステンを含む鉱物 である灰重石は、白色であるため長石類との区別が困 難であった.また、輝水鉛鉱・黄銅鉱・黄鉄鉱などの 金属鉱物の微晶が識別でき、花崗岩全体がこれらの鉱 物の鉱染を受けていると考えられる.この他、花崗岩 全体として黒雲母などの有色鉱物の割合がやや多く、 花崗岩というより花崗閃緑岩に近い岩石であると考え られる.蛍光X線分析においても坑道内の花崗岩片の SiO2が約67%なので、花崗岩と閃緑岩の中間タイプと考 えられる.また、結晶粒の大きい長石類が目立つ花崗 斑岩的な部分も見られる.この斑状の組織は超丹波帯 との接触部付近の周縁相で顕著にみられる.

以上の調査結果より,内外海鉱山におけるタングス テンを含む灰重石の成因について考えると,蘇洞門花 崗岩類の角閃石黒雲母花崗岩の固結直後に,残漿中に 濃縮されていたタングステンやモリブデン成分など が,超丹波帯の堆積岩層と蘇洞門花崗岩類との接触部 をはじめ,花崗岩の節理,断層破砕帯のような内圧の 低下する構造線の部分に,移動固結し,鉱床を形成し たものと考えられる.

謝 辞

2010年6月9日内外海鉱山の坑道調査の際,洞窟棲コ ウモリ類を調査研究している百崎孝男氏(千葉県松戸 市在住)に同行していただいた.また,角閃石黒雲母 花崗岩の化学組成分析には福井県工業技術センターの 蛍光X線分析機器を使用させていただいた.その際, 担当の斉藤正剛氏には機器の使用方法や測定データの 解析方法などについてていねいなご指導をいただい た.以上の方々に深く感謝いたします.

引用文献

- 福井県,2010,福井県地質図および同説明書,福井県建設 技術公社
- 原口九万・辻岡加四雄,1954,小浜湾内外海鉱山の地質鉱 床調査,福井県地下資源の全貌,第1号,188-191
- 平林万衛・宮川彦一郎, 1954, 内外海鉱山周辺の地質鉱床 調査,福井県地下資源の全貌,第1号, 232-234
- 広川 治・黒田和男, 1957, 5万分の1地質図幅鋸崎およ び同説明書, 地質調査所
- 亀高正男他,2010,若狭湾地域の幾つかの火成岩類のK-Ar 年代,福井市自然史博物館研究報告,第57号,5-10
- 塚脇祐次・鵜飼保郎・竹内忠雄, 1961, 福井県内外海鉱山 の含ウラン鉱床, 地質調査所報告№190, 217-223
- 鵜飼保郎, 1959, 福井県内外海鉱山調査報告, 地質調査所 月報, Vol.10, No.9, p.817-822

内外海鉱山跡の調査報告

写真1:内外海鉱山の全景(中央のへこみ部分).

写真2:中央のへこみ部分に角閃石黒雲母花崗岩が貫入して いる.

写真3: 左側上下二つは1号坑, 2号坑. 右は海食洞.

写真4:2号坑西口. 左半分は超丹波帯堆積岩層,右半分は角 閃石黒雲母花崗岩.

写真5:2号坑西口は超丹波帯(左)と角閃石黒雲母花崗岩と の接触部に沿って掘られている.

写真6:2号坑西口内部. 丸太木材が残っている.

写真7:2号坑西口内部を1号坑西口内部より見下ろす. 左壁 は超丹波帯,右壁は角閃石黒雲母花崗岩.

写真8:1号坑西口内部. 天井部は超丹波帯の頁岩層.

写真9: 坑内に残る水没した竪坑.

写真10:3階部への斜坑.2階部を渡る橋が残る.

写真11:天井部は超丹波帯の頁岩層.下部は角閃石黒雲母花 崗岩.

写真13: 坑内に角閃石黒雲母花崗岩のズリが残る.

写真12:黒色部は超丹波帯の頁岩層.下部は角閃石黒雲母花 崗岩.

写真14:坑内壁面の角閃石黒雲母花崗岩表面で輝く輝水鉛鉱 の結晶.

写真15:2号坑西口から真っすぐ進むと海食崖の切窓に出る.

写真16:写真15の切窓を海側から見る. 周囲は角閃石黒雲母 花崗岩.

写真17:1号坑内,斜坑の上部は海食崖の切窓になっている.

写真18:写真17の斜坑下部から見上げた切窓.

写真19:角閃石黒雲母花崗岩の海食崖に開けられた大きな切 窓.

写真20:1号坑西口の右上にある2号坑東口.

写真21:2号坑西口左壁に見られる超丹波帯の頁岩層(左)と 角閃石黒雲母花崗岩の接触部.

写真22:写真21の接触部のアップ.角閃石黒雲母花崗岩が頁 岩層に複雑に貫入している.

写真23:貫入した角閃石黒雲母花崗岩の熱によりホルンフェ ルス化した超丹波帯のシルト岩と泥岩の細互層.

写真24:2号坑東口の角閃石黒雲母花崗岩(左)と超丹波帯 砂岩層との接触部.角閃石黒雲母花崗岩には急冷周 縁相が見える.

写真25:鉱山北側の角閃石黒雲母花崗岩の海食崖で見られる 苦鉄質捕獲岩.

写真27:2号坑西口付近で見られた.角閃石黒雲母花崗岩に 取り込まれた各種捕獲岩.

写真26:1号坑西口右側の海食洞表面で見られる苦鉄質捕獲 岩.

写真28:若狭湾側から見た内外海鉱山北西端.角閃石黒雲母 花崗岩(左)と超丹波帯との明瞭な接触部.

写真29:2号坑の坑内から採集した角閃石黒雲母花崗岩.角 閃石の長柱状の結晶が見られる.

写真31:"白石黒石",蘇洞門海岸北東端の角閃石黒雲母花崗 岩(右)と丹波帯との接触部.

写真30:写真29に紫外線ランプの光をあてると青色の蛍光を 発する鉱物(灰重石)が識別できる.

写真32:写真31のアップ.丹波帯の頁岩層(左)中に角閃石 黒雲母花崗岩からの石英脈が伸びている.