経ヶ岳火山の岩屑なだれ岩塊の分布、流下機構、^{14}C年代

吉澤 康暢

Distribution, transportation mechanism and ^{14}C ages of debris avalanche blocks at Kyogatake Volcano,
Ohno City, Fukui Prefecture, Central Japan

Yusunobu YOSHIZAWA

（要旨） 福井県大野市2市郊の位置する経ヶ岳（1625 m）は、火山体の原面をほとんど失った古い火山であり、火山のK-Ar年代値は、1.3～0.9 Ma（清水ほか、1988）を示している。その南西麓にあたる六呂師高原および塩原野台地には、この火山体の大規模な崩壊により発生した、岩屑なだれ堆積物が広く分布している。この堆積物分布域では、長径20 mをこえる岩屑なだれ岩塊や流れ山形が数多く残存するのが特徴である。この岩屑なだれ岩塊の分布や産状をはじめ、経ヶ岳と保月山の二つの崩壊源の地形・地質を調査した結果、岩屑なだれ岩塊の分布の特徴や流下機構の一部が明らかになった。また、岩屑なだれ堆積物中の木片の^14C年代値の測定結果も得られた。

キーワード：岩屑なだれ岩塊、経ヶ岳崩壊源、保月山崩壊源、馬蹄形凹地、^{14}C年代

1 はじめに

経ヶ岳火山は、九頭竜川の支流である浦波川、女神川、唐谷川、打波川の上流域を占めていた成層火山であるが、その後の大規模な山体崩壊と侵食により、火山体の原面の形態をほとんど失った古い火山である。経ヶ岳火山の初期の溶岩は、主に粗粒玄武岩質安山岩であり、中～後期の溶岩は主に粗粒玄武岩質安山岩である。経ヶ岳火山の年代値としては、清水ほか（1988）はK-Ar年代測定法により、経ヶ岳下部溶岩にあたる女神川上流域恩寺山南側の溶岩の年代を1.07±0.07 Ma、経ヶ岳下部溶岩にあたる経ヶ岳北方沿いの溶岩の年代を1.12±0.06 Ma。また、九頭竜川右岸壁堅付近の岩屑流メガブロックの年代を1.06±0.09 Maとしている。また、吉澤（2001）は、フィッシオン・トラック年代測定法により壁堅火砕堆積物中の厚さ2～3 mの火山灰層の年代値を1.06±0.22 Maと報告している。経ヶ岳山頂の南西側には、崩壊源地形である馬蹄形凹地が存在する。同様の地形が経ヶ岳南西部に位置する保月山にもみられる。これら崩壊源より発生した岩屑なだれ堆積物は、越高原牧場・南六呂師地区から妙谷地区および勝山市大矢谷・岩ヶ野集落へと流下し、その一部は九頭竜川を越え、大野盆地南東部に位置する、東西約2.7 km、南北約3.0 kmの塩原野台地を形成した。塩原野台地の南西側には真名川が、北東側には九頭竜川が流れている。台地面は河床より10～25 m高い侵食崖を形成している。岩屑なだれ堆積物については山田（1986）、大八木（1996）、吉澤（2001）、三村（2001）、土田（2006）の研究がある。崩壊地形形成の原因のひとととして断層運動が挙げられるが、この地域に分布する崩壊地形と断層運動との関連性についてはまだ明らかになっていない。

2 岩屑なだれ岩塊の産状

経ヶ岳火山の西側および南西側に分布する、岩屑なだれ堆積物上の長径1 m以上の岩屑なだれ岩塊約500個および流れ岩約60個について調査を行った。調査地域に分布する岩屑なだれ岩塊の岩質は全て同じで、暗色に細密な安山岩の角礫と、同質の基質よりなる凝灰角礫岩～火山角礫岩である。これと同質の火山角礫岩層は、経ヶ岳および保月山の馬蹄形凹地周辺一带

![図1：鞍谷橋下流の九頭竜川河床中の岩屑なだれ岩塊、底面が滑らか](image-url)
尾根等に厚く堆積している。これらは、岩屑なだれ岩塊の源岩と考えられ、経ヶ岳火山形成時の噴火活動の激しさを示す角礫状残岩とも考えられる。

岩屑なだれ岩塊は、経ヶ岳および保月山の山頂一帯を構成していた火山角礫岩層が突然崩壊し、巨大なブロックとなったものが、発生した岩屑なだれに乗って流れ下ってきたものと考えられる。したがって、岩塊は岩屑なだれ堆積物が流動中に固まってできたものではなく、経ヶ岳および保月山一帯を構成していた山体の破片が巨大ブロックとなり、そのまま運ばれてきたものである。

岩塊を運搬した岩屑なだれ堆積物のマトリックスは安山岩質の灰色の砂や泥からなり、硬く締まっている。礁の大きさは大小様々で、ほとんどが角礫でラムダ状に堆積している。これらは、岩屑なだれが流れに乗って経ヶ岳から長距離滑りながら運ばれた際、基盤岩などとの摩擦によって、撫や減ってできた面と考えられる。

● 大矢谷白山神社の巨大岩塊（図2）

この岩屑なだれの大きさは、高さ約25m、横幅約40mである。この岩塊には、崩壊源である保月山を構成していた火山角礫岩層の成層構造の一一部がはっきり認められる。この岩塊の他、付近には10個以上の岩塊が密集している。この地域は、弁財天川の峡谷状の傾斜地から大矢谷集落の北面の出にあるため、岩屑なだれの流速が急に落ち、多くの岩屑なだれ岩塊がこの場所にとどまったものと思われる。その後の弁財天川の侵食で、岩塊の周囲を埋めていた土砂等が洗い流され、巨大な岩塊のみがその場に取り残されたものと考えられる。

● 塚原野台地の流れ山地形の中心核となった岩塊（図3）

塚原野台地には、かつては多くの流れ山が存在していた。池田・大八木（1996）では1947年の空中写真から、約570個の流れ山が確認できるとしているが、現在ではその大半が失われ約60個が確認できるのみである。その中で、流れ山の中心核として大きな岩屑なだれ岩塊が認められるものは築山所ほどであり、割合的には少ない。岩屑なだれ堆積物の最終到達地点である塚原野において、流れ山が形成される際、岩屑なだれ岩塊が大きく関与していることが考えられる。

● ミルク工房付近の巨大岩塊群（図4）

六呂師高原スキー場前にあるミルク工房付近には、巨大岩塊が多数散在している。岩塊群の密集状態は、ゲーグルアースの画像からもはっきり読み取ることができる。そのうち2個は20mを超える巨大な岩塊で、しかも長軸がはっきりしている。長軸は岩屑なだれの流れ経路に対しほぼ直角になっている。これらの岩塊群のソースは、保月山崩壊源に求めることができる。この地域は、保月山の岩屑なだれ堆積物が、大矢谷・岩ヶ野方面と南六呂師方面へと別れるポイントにあたるが、大矢谷・岩ヶ野方面への岩屑なだれの時期の方が古いと考えられる。南六呂師方面への岩屑なだれは、先に堆積した小高い丘に行く手を阻まれ、進路を南に大きく変換するために、岩屑の流れが停滞して密集したものと考えられる。

3 岩屑なだれ岩塊の分布と流れ経路

調査地域に分布する、長径1m以上の岩屑なだれ岩塊約500個および流れ山約60個について地形図上にP
ロットしてみると、経ヶ岳および保月山の山頂付近より駅原野台地、大矢谷・岩ヶ野までの幾本もの岩屑なだれの流下経路や停滞域などを読み取ることができる。この岩屑なだれ堆積物の流走距離（L）は約13 km、高さ差（H）は約1.4 km、体積は約0.3 km³と考えられる。見かけの等価摩擦係数（H/L）は0.11で、火山体の崩壊により発生する岩屑なだれの一般的な値の範囲内にある。

岩屑なだれ堆積物の経路の中で、唐谷川沿いの縦から橋上に至る大師橋付近には、新第三紀中新世の硬い火山岩層が分布している。そのため岩盤が両岸からまる細いノドのような地形になっている。山体崩壊時に、岩屑なだれ堆積物がこの狭い道路を通じて流下する際、谷底を深く侵食したものと考えられる。また、この狭い部分のノズル効果により、岩屑なだれ堆積物は流速を増し、一気に橋上・森丘から九頭竜川を渡り駅原野台地にまで達したものと考えられる、大師橋の上流にある旧道の大八橋付近では、川底に新第三紀中新世の火山岩層が露頭しており、岩屑なだれ堆積物がこの岩盤上に複数個直接残されている。

岩屑なだれ岩塊、流れ山、堆積物の分布および流下

図5：経ヶ岳火山の岩屑なだれ岩塊、流れ山、岩屑なだれ堆積物の分布および流下経路
4 岩屑なだれ岩塊の
長軸方向の規則性と流下機構

長径が10mを超えるような巨大岩塊のいくつかについて、その長軸の方向が示す角度を計測してみた。その結果、岩屑なだれ岩塊の長軸方向は、岩塊の分布から推定される岩屑なだれ堆積物の流下経路に対して、ほぼ直角に向く規則性を発見した。この現象は大きな岩塊ほど良く現れている。この事実は、岩屑なだれ岩塊が崩壊源より吹き飛びられて着地したものではなく、岩屑なだれ堆積物の流れに乗って移動し堆積したことの示している。この規則性により、岩塊の長軸方向を計測すれば、逆に岩屑なだれの流下方向を推定することも可能である。また、これからの岩塊は、岩屑なだれ堆積物にあまり深く埋まっていないのが特徴である。これは、岩屑なだれ岩塊が岩屑なだれ堆積物上に浮いた状態で移動したことを示している（図6）。

この岩屑なだれ岩塊の長軸方向の配列の規則性は、現在の河原の礁や岩塊等で普通に見られる定向配列と同様のものと考えられる（図7）。この現象は、火山泥流と石方流の災害記録映像等で、岩塊がその長軸を流れに直角に向けて流されていく様子を観察できる。特に流量が多い大洪水の後には、河原には見事な礁の定向配列が認められる。その河原の礁の配列のメカニズムについては、洪水時の激しい泥水の流れの中に観察が不可能である。しかし、長軸を持つ礁と流水があれば、場所を選ばずこの現象のモデル実験が可能である。

モルタル実験の結果から、礁の移動および配列の原理について考察してみる。まず、長軸を持つ礁に流水を当てると、ベルヌーイの定理により礁の両端に力のモーメントが生じ、礁はその重心の回りに回転振動しながら下流に押し流されていく。流速が落ちると、やがて礁は長軸を流れに直角に向けて静止する。規模が同じ、違う巨大な岩屑なだれ岩塊においても、大規模な火山体の崩壊による位置エネルギーで運ばれるため、岩屑なだれを構成する礫・泥・礁などが流体となり、流水と同じ役割で、巨大な岩塊を押し流すものと考えることができる。そして流速が落ちる場所で、巨大な岩塊は流れに対してその長軸を直角に向けて静止するものと考えることができる。

次のように写真は、グーグルアースによる岩屑なだれ岩塊が個別に識別できる鮮明な画像である。これら
5 岩屑なだれ岩塊のソースと崩壊源の地形

経ヶ岳火山の大規模崩壊による岩屑なだれの発生源
は、経ヶ岳馬蹄形凹地に求めることができる。しかし、
これだけでは説明のつかないオリムビス原ばら、六呂師ス
キー場および大矢谷・岩ヶ野方面への岩屑なだれ堆積
物が存在する。これらの崩壊源は保月山（1272 m）に
求めることができる。ここには、スプーン底形の凹
地（幅750 m、長さ1200 m、滑落崖の高さ100 m）が
存在する。二つの崩壊源の順序については、規模の小
さな保月山崩壊源が先に崩壊し、その後、規模の大き
な経ヶ岳崩壊源が崩壊したものと考えられている。経
ヶ岳馬蹄形凹地には、明瞭な残留崖と平坦面を持つ滑
落ブロックが残存する。滑落ブロックの下流側は、高
度差200 mの急崖となっている。これは2次的な滑落
崖の末端面と考えられる。
図13：空撮による経ヶ岳崩壊源の馬蹄形凹地。明確な曲面を持つ滑落産と直下にはブナ林に覆われた滑落ブロックが見える。ここは池の大沢と呼ばれ、鹿谷川の最上流部にあたり。

図14：図13と同じ場所を、グーグルアースを3Dにして見たもの。この時期の曲面は横き面のもので、地形の観察には最適であり、実際の空撮の写真と比較しても通色ない。経ヶ岳馬蹄形凹地の詳細な地形をはじめ、手前の保乃山馬蹄形凹地との違いも良くわかる。
6 岩層なだれ堆積物の14C年代等

大規模な流の唐谷川河床に露出する岩層なだれ堆積物中より無炭化木片を発見し、その14C年代値を測定したところ、4930±110年B.P.（Teledyne Japan）の結果を得た。これを歷年代に換算すると5590〜5990cal. B.P.とされる。このことは岩層なだれ堆積物の堆積年代の上限と考えられる。この木片を含む岩層なだれ堆積物は、塚原野面、伏石面、萩ヶ野面形成後にできたと考えられ、森林面の形成時期に相当すると考えている。一方、壁倉火砕流堆積物の厚さ2〜3 mの火山灰層のフィッショントトラック年代値を測定したところ、1.06±0.22 Ma（Geochronology Japan）の結果を得た。また、同じ壁倉火砕流堆積物中に挟まれた炭化・絹化した樹幹および木片の14C年代値は3 9000年B.P.（Teledyne Japan）を示した。

塚原野の岩層なだれ堆積物を覆う土壌の最下部から2.6〜2.9万年前に噴出したAT起源と同定される火山ガラスの淡集層が見出されている。しかし約5万年前に噴出したDKPによって推定される産晶鉱物等は確認できていない。これらのテフラの産出状況から塚原野台地を形成した岩層なだれの発生年代は、AT降灰直前、すなわち3〜4万年前頃の可能性が高いと考えられ（土田，2006）。

7 考 察

岩屑なだれの流下路経路を考察する場合、岩屑なだれ岩塊の分布だけではなく、岩屑なだれの流下に伴い堆積された面の区分が重要な要素になると考えている。今回、空中写真および地形図から精度を上げて詳細に調査した結果、次の7面を岩屑なだれによる堆積面と考えた。面の形成時期が古いものから順に

①土谷面 → ②大穴谷・岩ヶ野面 → ③塚原野面→ ④伏石面 → ⑤萩ヶ野面 → ⑥森木面→ ⑦唐谷川沿いの低位面 とした。

以上の7面のうち、面の新旧関係が判断できる現象としては、伏石面の隣接竜川に面した末端が古い侵食崖になっていること、その後に形成されたと考えられる森木面の南端部にある八町付近の面がこの侵食崖の
図16: グーグルアースを3Dにして見たもの。馬蹄形の地形が明瞭な保月山崩壊源、宿谷川の源流部で、岩屑なだれが流れ下った流路。右側の谷間は、ボブスレーのコースのように険状の曲面になっていて、上層がオーバーハングしている。岩屑なだれが高速で通過する際、削った面である可能性が高い。

西側に回り込んでいます。また、見さんは若谷川沿いで、森前橋柱状が被覆されている。他原野面は経ヶ岳から遠方にあり、現在の経ヶ岳よりも高かったと推定される成層火山の崩壊による堆積物と考えられ、大量の岩屑なだれ堆積物がストレートに流れ下し、最終停止した場所と考えられることである。

流下経路については、経ヶ岳崩壊源、保月山崩壊源、岩屑なだれ堆積の分布および堆積面の区分などから次のように考察した。

経ヶ岳からは最遠方にある塔原野面は、保月山を崩壊源とすると、仮設も屈曲したコース流れることになり無理がある。やはり、経ヶ岳を崩壊源とするストレートコースを考えた方がより自然であると考えられる。

保月山を崩壊源とするストレートコースは、大矢谷・岩ヶ野面および池ヶ原面で、より地形の低いふるさと自然公園および南六呂師面の方へもカーブして流れ下ったものと考えられる。赤尾・仏ヶ山・神野集落周辺には、流れ山地形が認められる。

岩屑なだれ堆積が密集している場所としては、みるく工房西側、ふるさと自然公園、南呂師南部、南六呂師北部などが主なものである。これらのうち、みるく工房西側およびふるさと自然公園、南六呂師北部については、その位置関係や地形などから、経ヶ岳からの供給とは考えにくく、保月山からののみの供給と考えられる。南呂師南部については、その位置関係や地形などから、経ヶ岳からの供給がメインであったと考えられる。

伏石面と森前橋柱状に岩屑なだれ堆積が数多く認められるが、伏石面の地形の高まりの縁に沿った集積と考えられる。

西側のソープショップ施設の上野面については、大量の岩屑なだれ堆積物が形成されており、その南西側の九頭竜川沿いでは、川底から約110mの浸食崖となっている。岩屑なだれ堆積物の中身も良く見出し、砂や泥をマトリックスとした大小様々な角礫がランダムに堆積している。一部には成層構造も認められる。堆積層については不明である。

大矢谷・岩ヶ野面は、岩屑なだれ堆積物が弁財天川に沿って谷底を埋めるように堆積した面で、下流に向
かって緩やかな斜面を形成している。対象地域はこの堆積面を深く侵食し、深さ約25 mの峡谷状地形を形成している。

宮崎市は、対象地域から大規模な溶岩の堆積面を形成している。このような深い峡谷状の地形は、岩屑堆積物のような堆積物の堆積が、侵食されてできる峡谷地形の特徴と考えられる。

伏石面については、そのカザボコ型の地形的伸びの方向の特徴を、崩壊流を経てケヤ板や保月山に求めることには無理がある。伏石面の上流部にある湯谷戸にも小規模な馬蹄形谷地が認められることから、そのソースを湯の谷戸および湯谷戸に求めることができる。

大型谷・岩ヶ野面の東側にある赤尾・笹尾・神野集落周辺には、岩屑堆積物の堆積面が典型的に出る流れの勾配や岩屑無堆積物を確認することができる。これらのことから大規模面・岩ヶ野面は、保月山を崩壊源とする岩屑堆積物により形成されたと考えられる。

以上の結果をまとめると、流れ続編については、次の7コースが主なものと考えている。これは、岩屑堆積物の堆積面が侵食されることを含む。

I: 保月山→池ヶ原
II: 保月山→八呂師原高原スキー場→大矢谷→岩ヶ野
III: 保月山→ふるさと自然公園
IV: 保月山→南八呂師→大師橋→橋爪→森林
V: 経ヶ岳→唐沢→南八呂師→橋爪→森林、経ヶ野
VI: 湯谷戸→湯の谷戸→伏石
VII: 経ヶ岳→保月山→上野

謝辞
本研究を進めるにあたり、福井大学教育地域科学部地学教室の山本博文教授には、丁寧にご指導をいただきました。ここに記して深く感謝いたします。

引用文献
池田浩子・大八木規夫、1996、福井県大野市の最上部堆積物の分布、日本地質学会報告、(1)、15p。
三村弘二、2001、福井県経ヶ岳火山の隠岐構造をもつ堆積物の堆積様式に関する研究、(52)、303-307。
森山健一、2007、遅延中の火口堆積物の堆積面形成年代について、日本地質学会報告、(10)、28p。
清水智・山崎正男・板谷徹雄、1988、南白百合地帯に分布する新世末期火山のK-Ar年代、岡山理科大学誌

経ヶ岳火山の岩屑なだれ堆積物の分布、流下機構、1C年代
山研究研究所研究報告、(14)，1-36。
土田浩司，2006，奥越地域の崩壊地形と断層運動について，
福井大学大学院修士論文，111p。
山田 希，1986，越前経ヶ岳周辺谷川岩屑堆と経ヶ岳火山の解
体について，金沢大学文学部史学科地理学専攻卒業論文,
34p。
山本博文，2004，福井県大野盆地南東縁の水準断層について,
地震 第2輯，57，199-208。
山本博文・土田浩司，2002，塩原野台地の流れ山地域の変遷
福井大学地域環境研究教育センター研究紀要「日本海地域
の自然と環境」，(9)，93-100。
吉澤千雪子，1993，経ヶ岳火山・岩屑流堆積物上の巨礫の研
究Ⅲ，福井県中学校教育研究会理科部会研究紀要，(41),
34-62。
吉澤康憲，2001，福井県大野市経ヶ岳火山周辺堆積物
の構造，表面形態，年代，日本地質学会第108年学術大会
講演要旨，p.189。